
411

C H A P T E R
 26

III. Tk Ba

sic
s

The Grid Geometry Manager 26

This chapter explores the grid geometry manager that positions widgets on a
grid that automatically adjusts its size. Grid was added in Tk 4.1.

This Chapter is from Practical Programming in Tcl and Tk, 4th Ed.
Copyright 2003 © Brent Welch
http://www.beedub.com/book/
The grid geometry manager arranges
widgets on a grid with variable-sized rows and columns. You specify the rows
and columns occupied by each widget, and the grid is adjusted to accommodate
all the widgets it contains. This is ideal for creating table-like layouts. The man-
ager also has sophisticated facilities for controlling row and column sizes and the
dynamic resize behavior. By introducing subframes with grids of their own, you
can create arbitrary layouts.

Don’t pack and grid into the same manager widget.
As discussed on page 395, you can use a combination of pack and grid to

create your display. But for each individual manager widget, you must use only
one of pack or grid to manage all of its immediate children.

A Basic Grid

Example 26–1 uses grid to lay out a set of labels and frames in two parallel col-
umns. It takes advantage of the relative placement feature of grid. Instead of
specifying rows and columns, the order of grid commands and their arguments
implies the layout. Each grid command starts a new row, and the order of the
widgets in the grid command determines the column. In the example, there are
two columns, and each iteration of the loop adds a new row. grid makes each col-
umn just wide enough to hold the biggest widget. Widgets that are smaller are
centered in their cell. That’s why the labels appear centered in their column:

412 The Grid Geometry Manager Chap. 26
Example 26–1 A basic grid.

foreach color {red orange yellow green blue purple} {
label .l$color -text $color -bg white
frame .f$color -background $color -width 100 -height 2
grid .l$color .f$color

}

The -sticky Setting

If a grid cell is larger than the widget inside it, you can control the size and
position of the widget with the -sticky option. The -sticky option combines the
functions of -fill and -anchor used with the pack geometry manager. You spec-
ify to which sides of its cell a widget sticks. You can specify any combination of n,
e, w, and s to stick a widget to the top, right, left, and bottom sides of its cell. You
can concatenate these letters together (e.g., news) or uses spaces or commas to
separate them (e.g., n,e,w,s). Example 26–2 uses -sticky w to left justify the
labels, and -sticky ns to stretch the color frames to the full height of their row:

Example 26–2 A grid with sticky settings.

foreach color {red orange yellow green blue purple} {
label .l$color -text $color -bg white
frame .f$color -background $color -width 100 -height 2
grid .l$color .f$color
grid .l$color -sticky w
grid .f$color -sticky ns

}

A Basic Grid 413
III. Tk Ba

sic
s

Example 26–2 uses grid in two ways. The first grid in the loop fixes the
positions of the widgets because it is the first time they are assigned to the mas-
ter. The next grid commands modify the existing parameters; they just adjust
the -sticky setting because their row and column positions are already known.

You can specify row and column positions explicitly with the -row and
-column attributes. This is generally more work than using the relative place-
ment, but it is necessary if you need to dynamically move a widget into a differ-
ent cell. Example 26–3 keeps track of rows and columns explicitly and achieves
the same layout as Example 26–2:

Example 26–3 A grid with row and column specifications.

set row 0
foreach color {red orange yellow green blue purple} {

label .l$color -text $color -bg white
frame .f$color -background $color -width 100
grid .l$color -row $row -column 0 -sticky w
grid .f$color -row $row -column 1 -sticky ns
incr row

}

External Padding with -padx and -pady
You can keep a widget away from the edge of its cell with the -padx and

-pady settings. Example 26–4 uses external padding to shift the labels away
from the left edge, and to keep some blank space between the color bars:

Example 26–4 A grid with external padding.

foreach color {red orange yellow green blue purple} {
label .l$color -text $color -bg white
frame .f$color -background $color -width 100 -height 2
grid .l$color .f$color
grid .l$color -sticky w -padx 3
grid .f$color -sticky ns -pady 1

}

Tk 8.4 added the ability to specify asymmetric padding as a list of two
screen distances. For example, -padx {0.125i 0.25i} adds 1/8 inch of padding
to the left and 1/4 inch padding to the right of a widget.

414 The Grid Geometry Manager Chap. 26
Internal Padding with -ipadx and -ipady
You can give a widget more display space than it normally needs with inter-

nal padding. The internal padding increases the size of the grid. In contrast, a
-sticky setting might stretch a widget, but it will not change the size of the grid.
Example 26–5 makes the labels taller with -ipady:

Example 26–5 A grid with internal padding.

foreach color {red orange yellow green blue purple} {
label .l$color -text $color -bg white
frame .f$color -background $color -width 100 -height 2
grid .l$color .f$color
grid .l$color -sticky w -padx 3 -ipady 5
grid .f$color -sticky ns -pady 1

}

Multiple Widgets in a Cell

Example 26–6 shows all possible -sticky settings. It uses the ability to put
more than one widget into a grid cell. A large square frame is put in each cell,
and then a label is put into the same cell with a different -sticky setting. It is
important to create the frame first so it is below the label. Window stacking is
discussed on page 409. External padding is used to keep the labels away from the
edge so that they do not hide the -ridge relief of the frames.

Example 26–6 All combinations of -sticky settings.

set index 0
foreach x {news ns ew " " new sew wsn esn nw ne sw se n s w e} {

frame .f$x -borderwidth 2 -relief ridge -width 40 -height 40
grid .f$x -sticky news \

-row [expr {$index/4}] -column [expr {$index%4}]
label .l$x -text $x -background white
grid .l$x -sticky $x -padx 2 -pady 2 \

-row [expr {$index/4}] -column [expr {$index%4}]
incr index

}

Spanning Rows and Columns 415
III. Tk Ba

sic
s

Spanning Rows and Columns

A widget can occupy more than one cell. The -rowspan and -columnspan
attributes indicate how many rows and columns are occupied by a widget. Exam-
ple 26–7 uses explicit row, column, rowspan, and columnspan specifications:

Example 26–7 Explicit row and column span.

. config -bg white
foreach color {888 999 aaa bbb ccc fff} {

frame .$color -bg #$color -width 40 -height 40
}
grid .888 -row 0 -column 0 -columnspan 3 -sticky news
grid .999 -row 1 -column 0 -rowspan 2 -sticky news
grid .aaa -row 1 -column 1 -columnspan 2 -sticky news
grid .bbb -row 2 -column 2 -rowspan 2 -sticky news
grid .ccc -row 3 -column 0 -columnspan 2 -sticky news
grid .fff -row 2 -column 1 -sticky news

You can also use special syntax in grid commands that imply row and col-
umn placement. Special characters represent a cell that is spanned or skipped:

- represents a spanned column.
^ represents a spanned row.
x represents a skipped cell.

416 The Grid Geometry Manager Chap. 26
A nice feature of the implicit row and column assignments is that it is easy
to make minor changes to your layout. Example 26–8 achieves the same layout:

Example 26–8 Grid syntax row and column span.

. config -bg white
foreach color {888 999 aaa bbb ccc ddd fff} {

frame .$color -bg #$color -width 40 -height 40
}
grid .888 - - -sticky news
grid .999 .aaa - -sticky news
grid ^ .fff .bbb -sticky news
grid .ccc - ^ -sticky news

Row and Column Constraints
The grid manager supports attributes on whole rows and columns that affect
their size and resize behavior. The grid command has a rowconfigure and col-
umnconfigure operation to set and query these attributes:

grid columnconfigure master col ?attributes?
grid rowconfigure master row ?attributes?

With no attributes, the current settings are returned. The row and col
specifications can be lists instead of simple indices, so you can configure several
rows or columns at once.

Row and Column Padding

The -pad attribute increases a row or column size. The initial size of a row
or column is determined by the largest widget, and -pad adds to this size. This
padding can be filled by the widget by using the -sticky attribute. Row and col-
umn padding works like internal padding because it is extra space that can be
occupied by the widget’s display. In contrast, the -padx and -pady attributes on
an individual widget act like a spacer that keeps the widget away from the edge
of the cell. Example 26–9 shows the difference. The row padding increases the
height of the row, but the padding on .f1 keeps it away from the edge of the cell:

Example 26–9 Row padding compared to cell padding.

Row and Column Constraints 417
III. Tk Ba

sic
s

. config -bg black
label .f1 -text left -bg #ccc
label .f2 -text right -bg #aaa
grid .f1 .f2 -sticky news ;# no padding
grid .f1 -padx 10 -pady 10 ;# cell padding
grid rowconfigure . 0 -pad 20 ;# row padding

Minimum Size

The -minsize attribute restricts a column or row to be a minimum size. The
row or column can grow bigger if its widget requests it, but they will not get
smaller than the minimum. One useful application of -minsize is to create
empty rows or columns, which is more efficient than creating an extra frame.

Managing Resize Behavior

If the master frame is bigger than the required size of the grid, it shrinks to
be just large enough to contain the grid. You can turn off the shrink-wrap behav-
ior with grid propagate. If geometry propagation is off, then the grid is centered
inside the master. If the master frame is too small to fit the grid, then the grid is
anchored to the upper-left corner of the master and clipped on the bottom-right.

By default, rows and columns do not resize when you grow the master
frame. You enable resizing by specifying a -weight for a row or column that is an
integer value greater than zero. Example 26–10 grids a text widget and two
scrollbars. The protocol between the scrollbar and the text widget is described on
page 501. The text widget is in row 0, column 0, and both of these can expand.
The vertical scrollbar is in row 0, column 1, so it only grows in the Y direction.
The horizontal scrollbar is in row 1, column 0, so it only grows in the X direction:

Example 26–10 Gridding a text widget and scrollbar.

text .text -yscrollcommand ".yscroll set" \
-xscrollcommand ".xscroll set"-width 40 -height 10

scrollbar .yscroll -command ".text yview" -orient vertical
scrollbar .xscroll -command ".text xview" -orient horizontal
grid .text .yscroll -sticky news
grid .xscroll -sticky ew
grid rowconfigure . 0 -weight 1
grid columnconfigure . 0 -weight 1

418 The Grid Geometry Manager Chap. 26
You can use different weights to let different rows and columns grow at dif-
ferent rates. However, there are some tricky issues because the resize behavior
applies to extra space, not total space. For example, suppose there are four col-
umns that have widths 10, 20, 30, and 40 pixels, for a total of 100. If the master
frame is grown to 140 pixels wide, then there are 40 extra pixels. If each column
has weight 1, then each column gets an equal share of the extra space, or 10
more pixels. Now suppose column 0 has weight 0, columns 1 and 2 have weight 1,
and column 3 has weight 2. Column 0 will not grow, columns 1 and 2 will get 10
more pixels, and column 3 will get 20 more pixels. In most cases, weights of 0 or
1 make the most sense.

Weight works in reverse when shrinking.
If a row or column has to shrink, the weights are applied in reverse. A row

or column with a higher weight will shrink more. For example, put two equal
sized frames in columns with different weights. When the user makes the win-
dow bigger, the frame in the column with more weight gets larger more quickly.
When the window is made smaller, that frame gets smaller more quickly.

Uniform Columns

The -uniform attribute makes it easy to create columns (or rows) that are
the same width (or height). Use the -uniform attribute to create a group of col-
umns (or rows). The value of the attribute can by anything (e.g., xyz). All col-
umns (or rows) with the same -uniform attribute are in the same group. If they
all have the same -weight value, then they are all the same size. If one column
(or row) in a group has a -weight that is twice what the other columns (or rows)
have, then it is twice as big. This is illustrated in Example 26–11.

Example 26–11 Uniform column width.

foreach x {alpha beta gamma x y z} {
label .$x -text $x

}
.beta config -bg white
.y config -bg white
grid .alpha .beta .gamma -sticky news
grid .x .y .z -sticky news
grid columnconfigure . "0 1 2" -uniform group1 -weight 1
grid columnconfigure . 1 -weight 2

The grid Command 419
III. Tk Ba

sic
s

The grid Command

Table 26–1 summarizes the usage of the grid command. Table 26–2 summarizes
the options for a widget set with the grid configure command.

Table 26–1 The grid command.

grid bbox master ?c1 r1?
?c2 r2?

Returns the bounding box, of the whole grid, the cell
at c1, r1, or the cells from c1, r1 to c2, r2.

grid columnconfigure mas-
ter col ?options?

Sets or queries the configuration of col. Options are
-minsize, -weight, -pad, and -uniform.

grid configure win ?win
...? ?options?

Grids one or more widgets according to the
options, which are given in Table 26–2.

grid forget win ?win...? Unmaps the specified windows.

grid info win Returns the grid options of win.

grid location master x y Returns the cell column and row under the point x, y
in master.

grid propagate master
?boolean?

Enables or disables shrink-wrapping of master.

grid rowconfigure master
row ?options?

Sets or queries the configuration of row. Options are
-minsize, -weight, -pad, and -uniform.

grid remove slave Unmaps slave, but remember its configuration.

grid size master Returns the number of columns and rows.

grid slaves win ?-row r?
?-column c?

Returns the list of widgets managed by win, or just
those in the specified row or column.

Table 26–2 Grid widget options.

-in win Places inside win.

-column col Column position. Columns count from zero.

-columnspan n Spans n columns.

-ipadx pixels Internal widget padding in the X direction, in screen units.

-ipady pixels Internal widget padding in the Y direction, in screen units.

-padx pixels External widget padding in the X direction, in screen units. May be a
list of two screen units for asymmetric padding (Tk 8.4).

-pady pixels External widget padding in the Y direction, in screen units. May be a
list of two screen units for asymmetric padding (Tk 8.4).

-row row Row position. Rows count from zero.

-rowspan n Spans n rows.

-sticky how Positions widget next to any combination of north (n), south (s), east
(e), and west (w) sides of the cell. Use {} for center.

Blank page 420

	26
	The Grid Geometry Manager
	The grid geometry manager arranges widgets on a grid with variable-sized rows and columns. You specify the rows and columns occu...
	A Basic Grid
	Example 26-1 A basic grid.
	The -sticky Setting
	Example 26-2 A grid with sticky settings.
	Example 26-3 A grid with row and column specifications.

	External Padding with -padx and -pady
	Example 26-4 A grid with external padding.

	Internal Padding with -ipadx and -ipady
	Example 26-5 A grid with internal padding.

	Multiple Widgets in a Cell
	Example 26-6 All combinations of -sticky settings.

	Spanning Rows and Columns
	Example 26-7 Explicit row and column span.
	Example 26-8 Grid syntax row and column span.

	Row and Column Constraints
	Row and Column Padding
	Example 26-9 Row padding compared to cell padding.

	Minimum Size
	Managing Resize Behavior
	Example 26-10 Gridding a text widget and scrollbar.

	Uniform Columns
	Example 26-11 Uniform column width.

	The grid Command
	Table 26-1 The grid command.
	Table 26-2 Grid widget options.

