
315

C H A P T E R

III. Tk Ba
sic

s

 22

Tk by Example 22

This chapter introduces Tk through a series of short examples. The ExecLog
runs a program in the background and displays its output. The Example
Browser displays the Tcl examples from the book. The Tcl Shell lets you
type Tcl commands and execute them in a slave interpreter.

This chapter is from Practical Programming in Tcl and Tk, 3rd Ed.
© 1999, Brent Welch
http://www.beedub.com/book/

Tk provides a quick and fun way to gen-
erate user interfaces. In this chapter we will go through a series of short example
programs to give you a feel for what you can do. Some details are glossed over in
this chapter and considered in more detail later. In particular, the pack geometry
manager is covered in Chapter 23 and event bindings are discussed in Chapter
26. The Tk widgets are discussed in more detail in later chapters.

ExecLog

Our first example provides a simple user interface to running another program
with the exec command. The interface consists of two buttons, Run it and Quit,
an entry widget in which to enter a command, and a text widget in which to log
the results of running the program. The script runs the program in a pipeline
and uses the fileevent command to wait for output. This structure lets the user
interface remain responsive while the program executes. You could use this to
run make, for example, and it would save the results in the log. The complete
example is given first, and then its commands are discussed in more detail.

316 Tk by Example Chap. 22

Example 22–1 Logging the output of a program run with exec.

#!/usr/local/bin/wish
execlog - run a program with exec and log the output
Set window title
wm title . ExecLog

Create a frame for buttons and entry.

frame .top -borderwidth 10
pack .top -side top -fill x

Create the command buttons.

button .top.quit -text Quit -command exit
set but [button .top.run -text "Run it" -command Run]
pack .top.quit .top.run -side right

Create a labeled entry for the command

label .top.l -text Command: -padx 0
entry .top.cmd -width 20 -relief sunken \

-textvariable command
pack .top.l -side left
pack .top.cmd -side left -fill x -expand true

Set up key binding equivalents to the buttons

bind .top.cmd <Return> Run
bind .top.cmd <Control-c> Stop
focus .top.cmd

Create a text widget to log the output

frame .t
set log [text .t.log -width 80 -height 10 \

-borderwidth 2 -relief raised -setgrid true \

ExecLog 317
III. Tk Ba

sic
s

-yscrollcommand {.t.scroll set}]
scrollbar .t.scroll -command {.t.log yview}
pack .t.scroll -side right -fill y
pack .t.log -side left -fill both -expand true
pack .t -side top -fill both -expand true

Run the program and arrange to read its input

proc Run {} {
global command input log but
if [catch {open "|$command |& cat"} input] {

$log insert end $input\n
} else {

fileevent $input readable Log
$log insert end $command\n
$but config -text Stop -command Stop

}
}

Read and log output from the program

proc Log {} {
global input log
if [eof $input] {

Stop
} else {

gets $input line
$log insert end $line\n
$log see end

}
}

Stop the program and fix up the button

proc Stop {} {
global input but
catch {close $input}
$but config -text "Run it" -command Run

}

Window Title

The first command sets the title that appears in the title bar implemented
by the window manager. Recall that dot (i.e., .) is the name of the main window:

wm title . ExecLog

The wm command communicates with the window manager. The window
manager is the program that lets you open, close, and resize windows. It imple-
ments the title bar for the window and probably some small buttons to close or
resize the window. Different window managers have a distinctive look; the figure
shows a title bar from twm, a window manager for X.

318 Tk by Example Chap. 22

A Frame for Buttons

A frame is created to hold the widgets that appear along the top of the
interface. The frame has a border to provide some space around the widgets:

frame .top -borderwidth 10

The frame is positioned in the main window. The default packing side is the
top, so -side top is redundant here, but it is used for clarity. The -fill x packing
option makes the frame fill out to the whole width of the main window:

pack .top -side top -fill x

Command Buttons

Two buttons are created: one to run the command, the other to quit the pro-
gram. Their names, .top.quit and .top.run, imply that they are children of the
.top frame. This affects the pack command, which positions widgets inside their
parent by default:

button .top.quit -text Quit -command exit
set but [button .top.run -text "Run it" \

-command Run]
pack .top.quit .top.run -side right

A Label and an Entry

The label and entry are also created as children of the .top frame. The label
is created with no padding in the X direction so that it can be positioned right
next to the entry. The size of the entry is specified in terms of characters. The
relief attribute gives the entry some looks to set it apart visually on the display.
The contents of the entry widget are linked to the Tcl variable command:

label .top.l -text Command: -padx 0
entry .top.cmd -width 20 -relief sunken \

-textvariable command

The label and entry are positioned to the left inside the .top frame. The
additional packing parameters to the entry allow it to expand its packing space
and fill up that extra area with its display. The difference between packing space
and display space is discussed in Chapter 23 on page 337:

pack .top.l -side left
pack .top.cmd -side left -fill x -expand true

Key Bindings and Focus

Key bindings on the entry widget provide an additional way to invoke the
functions of the application. The bind command associates a Tcl command with
an event in a particular widget. The <Return> event is generated when the user
presses the Return key on the keyboard. The <Control-c> event is generated
when the letter c is typed while the Control key is already held down. For the

ExecLog 319
III. Tk Ba

sic
s

events to go to the entry widget, .top.cmd, input focus must be given to the wid-
get. By default, an entry widget gets the focus when you click the left mouse but-
ton in it. The explicit focus command is helpful for users with the focus-follows-
mouse model. As soon as the mouse is over the main window the user can type
into the entry:

bind .top.cmd <Return> Run
bind .top.cmd <Control-c> Stop
focus .top.cmd

A Resizable Text and Scrollbar

A text widget is created and packed into a frame with a scrollbar. The
width and height of the text widget are specified in characters and lines, respec-
tively. The setgrid attribute of the text widget is turned on. This restricts the
resize so that only a whole number of lines and average-sized characters can be
displayed.

The scrollbar is a separate widget in Tk, and it can be connected to different
widgets using the same setup as is used here. The text’s yscrollcommand
updates the display of the scrollbar when the text widget is modified, and the
scrollbar’s command scrolls the associated widget when the user manipulates the
scrollbar:

frame .t
set log [text .t.log -width 80 -height 10 \

-borderwidth 2 -relief raised -setgrid true\
-yscrollcommand {.t.scroll set}]

scrollbar .t.scroll -command {.t.log yview}
pack .t.scroll -side right -fill y
pack .t.log -side left -fill both -expand true
pack .t -side top -fill both -expand true

 A side effect of creating a Tk widget is the creation of a new Tcl command
that operates on that widget. The name of the Tcl command is the same as the
Tk pathname of the widget. In this script, the text widget command, .t.log, is
needed in several places. However, it is a good idea to put the Tk pathname of an
important widget into a variable because that pathname can change if you reor-
ganize your user interface. The disadvantage of this is that you must declare the
variable with global inside procedures. The variable log is used for this purpose
in this example to demonstrate this style.

The Run Procedure

The Run procedure starts the program specified in the command entry. That
value is available in the global command variable because of the textvariable
attribute of the entry. The command is run in a pipeline so that it executes in the
background. The leading | in the argument to open indicates that a pipeline is
being created. The catch command guards against bogus commands. The vari-
able input is set to an error message, or to the normal open return that is a file

320 Tk by Example Chap. 22

descriptor. The program is started like this:
if [catch {open "|$command |& cat"} input] {

Trapping errors from pipelines.
The pipeline diverts error output from the command through the cat pro-

gram. If you do not use cat like this, then the error output from the pipeline, if
any, shows up as an error message when the pipeline is closed. In this example it
turns out to be awkward to distinguish between errors generated from the pro-
gram and errors generated because of the way the Stop procedure is imple-
mented. Furthermore, some programs interleave output and error output, and
you might want to see the error output in order instead of all at the end.

If the pipeline is opened successfully, then a callback is set up using the
fileevent command. Whenever the pipeline generates output, then the script
can read data from it. The Log procedure is registered to be called whenever the
pipeline is readable:

fileevent $input readable Log

The command (or the error message) is inserted into the log. This is done
using the name of the text widget, which is stored in the log variable, as a Tcl
command. The value of the command is appended to the log, and a newline is
added so that its output will appear on the next line.

$log insert end $command\n

The text widget’s insert function takes two parameters: a mark and a
string to insert at that mark. The symbolic mark end represents the end of the
contents of the text widget.

The run button is changed into a stop button after the program begins. This
avoids a cluttered interface and demonstrates the dynamic nature of a Tk inter-
face. Again, because this button is used in a few different places in the script, its
pathname has been stored in the variable but:

$but config -text Stop -command Stop

The Log Procedure

The Log procedure is invoked whenever data can be read from the pipeline,
and when end of file has been reached. This condition is checked first, and the
Stop procedure is called to clean things up. Otherwise, one line of data is read
and inserted into the log. The text widget’s see operation is used to position the
view on the text so that the new line is visible to the user:

if [eof $input] {
Stop

} else {
gets $input line
$log insert end $line\n
$log see end

}

ExecLog 321
III. Tk Ba

sic
s

The Stop Procedure

The Stop procedure terminates the program by closing the pipeline. The
close is wrapped up with a catch. This suppresses the errors that can occur
when the pipeline is closed prematurely on the process. Finally, the button is
restored to its run state so that the user can run another command:

catch {close $input}
$but config -text "Run it" -command Run

In most cases, closing the pipeline is adequate to kill the job. On UNIX, this
results in a signal, SIGPIPE, being delivered to the program the next time it does
a write to its standard output. There is no built-in way to kill a process, but you
can exec the UNIX kill program. The pid command returns the process IDs from
the pipeline:

foreach pid [pid $input] {
catch {exec kill $pid}

}

If you need more sophisticated control over another process, you should
check out the expect Tcl extension, which is described in the book Exploring
Expect (Don Libes, O’Reilly & Associates, Inc., 1995). Expect provides powerful
control over interactive programs. You can write Tcl scripts that send input to
interactive programs and pattern match on their output. Expect is designed to
automate the use of programs that were designed for interactive use.

Cross-Platform Issues

This script will run on UNIX and Windows, but not on Macintosh because
there is no exec command. One other problem is the binding for <Control-c> to
cancel the job. This is UNIX-like, while Windows users expect <Escape> to cancel
a job, and Macintosh users expect <Command-period>. Platform_CancelEvent
defines a virtual event, <<Cancel>>, and Stop is bound to it:

Example 22–2 A platform-specific cancel event.

proc Platform_CancelEvent {} {
global tcl_platform
switch $tcl_platform(platform) {

unix {
event add <<Cancel>> <Control-c>

}
windows {

event add <<Cancel>> <Escape>
}
macintosh {

event add <<Cancel>> <Command-period>
}

}
}
bind .top.entry <<Cancel>> Stop

322 Tk by Example Chap. 22

There are other virtual events already defined by Tk. The event command
and virtual events are described on page 378.

The Example Browser

Example 22–3 is a browser for the code examples that appear in this book. The
basic idea is to provide a menu that selects the examples, and a text window to
display the examples. Before you can use this sample program, you need to edit
it to set the proper location of the exsource directory that contains all the exam-
ple sources from the book. Example 22–4 on page 327 extends the browser with a
shell that is used to test the examples.

Example 22–3 A browser for the code examples in the book.

#!/usr/local/bin/wish
Browser for the Tcl and Tk examples in the book.

browse(dir) is the directory containing all the tcl files
Please edit to match your system configuration.

switch $tcl_platform(platform) {
"unix" {set browse(dir) /cdrom/tclbook2/exsource}
"windows" {set browse(dir) D:/exsource}
"macintosh" {set browse(dir) /tclbook2/exsource}

}

wm minsize . 30 5
wm title . "Tcl Example Browser"

Create a row of buttons along the top

set f [frame .menubar]
pack $f -fill x
button $f.quit -text Quit -command exit
button $f.next -text Next -command Next
button $f.prev -text Previous -command Previous

The Run and Reset buttons use EvalEcho that
is defined by the Tcl shell in Example 22–4 on page 327

button $f.load -text Run -command Run
button $f.reset -text Reset -command Reset
pack $f.quit $f.reset $f.load $f.next $f.prev -side right

A label identifies the current example

label $f.label -textvariable browse(current)
pack $f.label -side right -fill x -expand true

Create the menubutton and menu

The Example Browser 323
III. Tk Ba

sic
s

menubutton $f.ex -text Examples -menu $f.ex.m
pack $f.ex -side left
set m [menu $f.ex.m]

Create the text to display the example
Scrolled_Text is defined in Example 30–1 on page 428

set browse(text) [Scrolled_Text .body \
-width 80 -height 10\
-setgrid true]

pack .body -fill both -expand true

Look through the example files for their ID number.

foreach f [lsort -dictionary [glob [file join $browse(dir) *]]] {
if [catch {open $f} in] {

puts stderr "Cannot open $f: $in"
continue

}
while {[gets $in line] >= 0} {

if [regexp {^# Example ([0-9]+)-([0-9]+)} $line \
x chap ex] {

lappend examples($chap) $ex
lappend browse(list) $f
Read example title
gets $in line
set title($chap-$ex) [string trim $line "# "]
set file($chap-$ex) $f
close $in
break

}
}

}

Create two levels of cascaded menus.
The first level divides up the chapters into chunks.
The second level has an entry for each example.

option add *Menu.tearOff 0
set limit 8
set c 0; set i 0
foreach chap [lsort -integer [array names examples]] {

if {$i == 0} {
$m add cascade -label "Chapter $chap..." \

-menu $m.$c
set sub1 [menu $m.$c]
incr c

}
set i [expr ($i +1) % $limit]
$sub1 add cascade -label "Chapter $chap" -menu $sub1.sub$i
set sub2 [menu $sub1.sub$i]
foreach ex [lsort -integer $examples($chap)] {

$sub2 add command -label "$chap-$ex $title($chap-$ex)" \
-command [list Browse $file($chap-$ex)]

324 Tk by Example Chap. 22

}
}

Display a specified file. The label is updated to
reflect what is displayed, and the text is left
in a read-only mode after the example is inserted.

proc Browse { file } {
global browse
set browse(current) [file tail $file]
set browse(curix) [lsearch $browse(list) $file]
set t $browse(text)
$t config -state normal
$t delete 1.0 end
if [catch {open $file} in] {

$t insert end $in
} else {

$t insert end [read $in]
close $in

}
$t config -state disabled

}

Browse the next and previous files in the list

set browse(curix) -1
proc Next {} {

global browse
if {$browse(curix) < [llength $browse(list)] - 1} {

incr browse(curix)
}
Browse [lindex $browse(list) $browse(curix)]

}
proc Previous {} {

global browse
if {$browse(curix) > 0} {

incr browse(curix) -1
}
Browse [lindex $browse(list) $browse(curix)]

}

Run the example in the shell

proc Run {} {
global browse
EvalEcho [list source \

[file join $browse(dir) $browse(current)]]
}

Reset the slave in the eval server

proc Reset {} {
EvalEcho reset

}

The Example Browser 325
III. Tk Ba

sic
s

More about Resizing Windows

This example uses the wm minsize command to put a constraint on the min-
imum size of the window. The arguments specify the minimum width and height.
These values can be interpreted in two ways. By default they are pixel values.
However, if an internal widget has enabled geometry gridding, then the dimen-
sions are in grid units of that widget. In this case the text widget enables grid-
ding with its setgrid attribute, so the minimum size of the window is set so that
the text window is at least 30 characters wide by five lines high:

wm minsize . 30 5

In older versions of Tk, Tk 3.6, gridding also enabled interactive resizing of
the window. Interactive resizing is enabled by default in Tk 4.0 and later.

Managing Global State

The example uses the browse array to collect its global variables. This
makes it simpler to reference the state from inside procedures because only the
array needs to be declared global. As the application grows over time and new
features are added, that global command won’t have to be adjusted. This style
also serves to emphasize what variables are important. The browse array holds
the name of the example directory (dir), the Tk pathname of the text display
(text), and the name of the current file (current). The list and curix elements
are used to implement the Next and Previous procedures.

Searching through Files

The browser searches the file system to determine what it can display. The
tcl_platform(platform) variable is used to select a different example directory
on different platforms. You may need to edit the on-line example to match your
system. The example uses glob to find all the files in the exsource directory. The
file join command is used to create the file name pattern in a platform-inde-
pendent way. The result of glob is sorted explicitly so the menu entries are in the
right order. Each file is read one line at a time with gets, and then regexp is
used to scan for keywords. The loop is repeated here for reference:

foreach f [lsort -dictionary [glob [file join $browse(dir) *]]] {
if [catch {open $f} in] {

puts stderr "Cannot open $f: $in"
continue

}
while {[gets $in line] >= 0} {

if [regexp {^# Example ([0-9]+)-([0-9]+)} $line \
x chap ex] {

lappend examples($chap) $ex
lappend browse(list) $f
Read example title
gets $in line
set title($chap-$ex) [string trim $line "# "]
set file($chap-$ex) $f

326 Tk by Example Chap. 22

close $in
break

}
}

}

The example files contain lines like this:

Example 1-1
The Hello, World! program

The regexp picks out the example numbers with the ([0-9]+)-([0-9]+)
part of the pattern, and these are assigned to the chap and ex variables. The x
variable is assigned the value of the whole match, which is more than we are
interested in. Once the example number is found, the next line is read to get the
description of the example. At the end of the foreach loop the examples array
has an element defined for each chapter, and the value of each element is a list of
the examples for that chapter.

Cascaded Menus

The values in the examples array are used to build up a cascaded menu
structure. First a menubutton is created that will post the main menu. It is asso-
ciated with the main menu with its menu attribute. The menu must be a child of
the menubutton for its display to work properly:

menubutton $f.ex -text Examples -menu $f.ex.m
set m [menu $f.ex.m]

There are too many chapters to put them all into one menu. The main menu
has a cascade entry for each group of eight chapters. Each of these submenus
has a cascade entry for each chapter in the group, and each chapter has a menu
of all its examples. Once again, the submenus are defined as a child of their par-
ent menu. Note the inconsistency between menu entries and buttons. Their text
is defined with the -label option, not -text. Other than this they are much like
buttons. Chapter 27 describes menus in more detail. The code is repeated here:

set limit 8 ; set c 0 ; set i 0
foreach key [lsort -integer [array names examples]] {

if {$i == 0} {
$m add cascade -label "Chapter $key..." \

-menu $m.$c
set sub1 [menu $m.$c]
incr c

}
set i [expr ($i +1) % $limit]
$sub1 add cascade -label "Chapter $key" -menu $sub1.sub$i
set sub2 [menu $sub1.sub$i]
foreach ex [lsort -integer $examples($key)] {

$sub2 add command -label "$key-$ex $title($key-$ex)" \
-command [list Browse $file($key-$ex)]

}
}

A Tcl Shell 327
III. Tk Ba

sic
s

A Read-Only Text Widget

The Browse procedure is fairly simple. It sets browse(current) to be the
name of the file. This changes the main label because of its textvariable
attribute that links it to this variable. The state attribute of the text widget is
manipulated so that the text is read-only after the text is inserted. You have to
set the state to normal before inserting the text; otherwise, the insert has no
effect. Here are a few commands from the body of Browse:

global browse
set browse(current) [file tail $file]
$t config -state normal
$t insert end [read $in]
$t config -state disabled

A Tcl Shell

This section demonstrates the text widget with a simple Tcl shell application. It
uses a text widget to prompt for commands and display their results. It uses a
second Tcl interpreter to evaluate the commands you type. This dual interpreter
structure is used by the console built into the Windows and Macintosh versions
of wish. The TkCon application written by Jeff Hobbs is an even more elaborate
console that has many features to support interactive Tcl use.

Example 22–4 is written to be used with the browser from Example 22–3 in
the same application. The browser’s Run button runs the current example in the
shell. An alternative is to have the shell run as a separate process and use the
send command to communicate Tcl commands between separate applications.
That alternative is shown in Example 40–2 on page 563.

Example 22–4 A Tcl shell in a text widget.

#!/usr/local/bin/wish
Simple evaluator. It executes Tcl in a slave interpreter

set t [Scrolled_Text .eval -width 80 -height 10]
pack .eval -fill both -expand true

Text tags give script output, command errors, command
results, and the prompt a different appearance

$t tag configure prompt -underline true
$t tag configure result -foreground purple
$t tag configure error -foreground red
$t tag configure output -foreground blue

Insert the prompt and initialize the limit mark

set eval(prompt) "tcl> "
$t insert insert $eval(prompt) prompt
$t mark set limit insert

328 Tk by Example Chap. 22

$t mark gravity limit left
focus $t
set eval(text) $t

Key bindings that limit input and eval things. The break in
the bindings skips the default Text binding for the event.

bind $t <Return> {EvalTypein ; break}
bind $t <BackSpace> {

if {[%W tag nextrange sel 1.0 end] != ""} {
%W delete sel.first sel.last

} elseif {[%W compare insert > limit]} {
%W delete insert-1c
%W see insert

}
break

}
bind $t <Key> {

if [%W compare insert < limit] {
%W mark set insert end

}
}

Evaluate everything between limit and end as a Tcl command

proc EvalTypein {} {
global eval
$eval(text) insert insert \n
set command [$eval(text) get limit end]
if [info complete $command] {

$eval(text) mark set limit insert
Eval $command

}
}

Echo the command and evaluate it

proc EvalEcho {command} {
global eval
$eval(text) mark set insert end
$eval(text) insert insert $command\n
Eval $command

}

Evaluate a command and display its result

proc Eval {command} {
global eval
$eval(text) mark set insert end
if [catch {$eval(slave) eval $command} result] {

$eval(text) insert insert $result error
} else {

$eval(text) insert insert $result result
}
if {[$eval(text) compare insert != "insert linestart"]} {

A Tcl Shell 329
III. Tk Ba

sic
s

$eval(text) insert insert \n
}
$eval(text) insert insert $eval(prompt) prompt
$eval(text) see insert
$eval(text) mark set limit insert
return

}

Create and initialize the slave interpreter

proc SlaveInit {slave} {
interp create $slave
load {} Tk $slave
interp alias $slave reset {} ResetAlias $slave
interp alias $slave puts {} PutsAlias $slave
return $slave

}

The reset alias deletes the slave and starts a new one

proc ResetAlias {slave} {
interp delete $slave
SlaveInit $slave

}

The puts alias puts stdout and stderr into the text widget

proc PutsAlias {slave args} {
if {[llength $args] > 3} {

error "invalid arguments"
}
set newline "\n"
if {[string match "-nonewline" [lindex $args 0]]} {

set newline ""
set args [lreplace $args 0 0]

}
if {[llength $args] == 1} {

set chan stdout
set string [lindex $args 0]$newline

} else {
set chan [lindex $args 0]
set string [lindex $args 1]$newline

}
if [regexp (stdout|stderr) $chan] {

global eval
$eval(text) mark gravity limit right
$eval(text) insert limit $string output
$eval(text) see limit
$eval(text) mark gravity limit left

} else {
puts -nonewline $chan $string

}
}
set eval(slave) [SlaveInit shell]

330 Tk by Example Chap. 22

Text Marks, Tags, and Bindings

The shell uses a text mark and some extra bindings to ensure that users
only type new text into the end of the text widget. A mark represents a position
in the text that is updated as characters are inserted and deleted. The limit
mark keeps track of the boundary between the read-only area and the editable
area. The insert mark is where the cursor is displayed. The end mark is always
the end of the text. The EvalTypein procedure looks at all the text between
limit and end to see if it is a complete Tcl command. If it is, it evaluates the com-
mand in the slave interpreter.

The <Key> binding checks to see where the insert mark is and bounces it to
the end if the user tries to input text before the limit mark. The puts alias sets
right gravity on limit, so the mark is pushed along when program output is
inserted right at limit. Otherwise, the left gravity on limit means that the
mark does not move when the user inserts right at limit.

Text tags are used to give different regions of text difference appearances. A
tag applies to a range of text. The tags are configured at the beginning of the
script and they are applied when text is inserted.

Chapter 33 describes the text widget in more detail.

Multiple Interpreters

The SlaveInit procedure creates another interpreter to evaluate the com-
mands. This prevents conflicts with the procedures and variables used to imple-
ment the shell. Initially, the slave interpreter only has access to Tcl commands.
The load command installs the Tk commands, and it creates a new top-level win-
dow that is "." for the slave interpreter. Chapter 20 describes how you can embed
the window of the slave within other frames.

The shell interpreter is not created with the -safe flag, so it can do any-
thing. For example, if you type exit, it will exit the whole application. The
SlaveInit procedure installs an alias, reset, that just deletes the slave inter-
preter and creates a new one. You can use this to clean up after working in the
shell for a while. Chapter 19 describes the interp command in detail.

Native Look and Feel

When you run a Tk script on different platforms, it uses native buttons,
menus, and scrollbars. The text and entry widgets are tuned to give the applica-
tion the native look and feel. The following screen shots show the combined
browser and shell as it looks on Macintosh, Windows, and UNIX.

A Tcl Shell 331
III. Tk Ba

sic
s

Example 22–5 Macintosh look and feel.

Example 22–6 Windows look and feel.

332 Tk by Example Chap. 22

Example 22–7 UNIX look and feel.

